

Prüfbericht-Nr.: Auftrags-Nr.: Seite 1 von 39 **CN24NHLM 001** 244569280 Order no .: Page 1 of 39 Test report no.:

Kunden-Referenz-Nr.: 2097732 Auftragsdatum: 2023.12.13

Order date: Client reference no.:

REPT BATTERO Energy Co., Ltd. Auftraggeber:

No.205, Binhai 6th Road, Konggang New District, Longwan District, Wenzhou 325000 Client:

Zhejiang, P.R.China

Prüfgegenstand: Rechargeable Prismatic Lithium-ion Cell

Test item:

Bezeichnung / Typ-Nr.: **CB84** Identification / Type no.:

Auftrags-Inhalt: Test report

Order content:

Prüfgrundlage: UL 9540A: 2019 (Fourth Edition)

Test specification:

Wareneingangsdatum: 2023.12.12

Date of sample receipt:

Prüfmuster-Nr.: #2023121201

Test sample no:

Prüfzeitraum: 2023.12.15 - 2024.01.30

Testing period:

Ort der Prüfung: See clause 1.1 of main

Place of testing: report

Prüflaboratorium: TUV Rheinland (Shanghai)

Testing laboratory: Co., Ltd.

Prüfergebnis*:

See main report Test result*:

geprüft von: Minhau tested by:

Datum: Simon Wang&Minhao Hu Date: 2024.02.04

Stellung / Position:

Project Engineer/Trainee

genehmigt von: authorized by:

Ausstellungsdatum:

Issue date: 2024.02.04

Stellung / Position:

Bowen Dong

Reviewer

Sonstiges / Other:

Zustand des Prüfgegenstandes bei Anlieferung: Condition of the test item at delivery:

Prüfmuster vollständig und unbeschädigt Test item complete and undamaged

* Legende: P(ass) = entspricht o.g. Prüfgrundlage(n) F(ail) = entspricht nicht o.g. Prüfgrundlage(n) N/A = nicht anwendbar N/T = nicht getestet F(ail) = failed a.m. test specification(s) * Legend: P(ass) = passed a.m. test specification(s)N/A = not applicableN/T = not tested

Dieser Prüfbericht bezieht sich nur auf das o.g. Prüfmuster und darf ohne Genehmigung der Prüfstelle nicht auszugsweise vervielfältigt werden. Dieser Bericht berechtigt nicht zur Verwendung eines Prüfzeichens.

This test report only relates to the above mentioned test sample as. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any test mark.

Test Report No.:

Seite 2 von 39 Page 2 of 39

Introduction

Model fire codes and energy storage system standards require energy storage systems to comply with UL 9540, which in turn requires battery cells and modules to comply with UL 1973. Compliance with these standards reduces the risk of batteries and battery energy storage systems (BESS) creating fire, shock or personal injury hazards. However, they don't evaluate the ability of the BESS installed as intended and with fire suppression mechanisms in place if necessary, from contributing to a fire or explosion in the end use installations.

To address these fire and explosion hazards associated with the installation of a BESS, the fire and other codes require energy storage systems to meet certain location, separation, fire suppression and other criteria. Those codes also provide a means to provide an equivalent level of safety based on large scale fire testing of anticipated BESS installations.

UL 9540A is intended to provide a test method that can be used as a basis for validating the safety of a BESS installation in lieu of meeting the specific criteria provided in those codes. The data generated can be used to determine the fire and explosion protection required for installation of a BESS.

The test method is initiated through the establishment of a thermal runaway condition that leads to combustion within the BESS. The test method outlined in UL 9540A consists of several steps – cell level testing, module level testing, unit level testing and installation level testing. The cell and module level testing steps are information gathering steps to inform the unit and installation level testing.

The following outlines the information that may gathered as part of the testing:

- a) Cell level An individual cell fails in a manner that leads to thermal runaway and fire through a suitable method such as external heating. Data such as off-gassing contents, temperatures at venting and temperatures at thermal runaway are recorded.
- b) Module level One or more cells within a BESS module fail in the manner determined during the cell level testing. Data such as fire propagation in the module, temperatures on the failed cells and surrounding cells, off-gassing contents and heat release data are gathered.
- c) Unit level A complete BESS is installed surrounded by target (e.g. dummy) BESS and walls separated at a distance as intended in its installation. The module level test is repeated on a module located in the BESS in the most unfavorable location. Data such as temperature within the BESS, on surrounding walls and target BESS; incident heat flux on walls and target BESS; observation of fire propagation from BESS to target units and walls as well as observance of explosions or evidence of re-ignition within the BESS; and heat release and off-gassing contents are gathered.
- d) Installation level This test is a repeat of the unit level test with the test conducted within a test room and with the intended fire suppression system installed as well as any overhead cables (that can lead to fire propagation) installed. This test is intended to validate the fire suppression system for the BESS installation. Data such as temperature within the BESS, on surrounding walls and target BESS; incident heat flux on walls and target BESS; fire propagation from the BESS to target units, walls or overhead cables and any observable explosion incidents or re-ignition within the BESS; and off-gassing contents (if needed) and heat release are gathered.

Test Report No.:

Seite 3 von 39 Page 3 of 39

Contents

4 0	ENERAL INFORMATION	B
1 GE	ENERAL INFORMATION	4
1.1	TEST SPECIFICATION	4
1.2	GENERAL REMARKS	
1.3	LIST OF ATTACHMENTS	5
1.4	REVISION INFORMATION	5
1.5	DEFINITIONS	6
2 GI	ENERAL PRODUCT INFORMATION	7
2.1	PRODUCT INFORMATION AND PARAMETERS	7
2.2	DIAGRAM WITH OVERALL DIMENSION	
2.3	PHOTOS	9
3 CE	ELL LEVEL TEST (SECTION 7 OF UL 9540A)	10
3.1	GENERAL	10
3.2	SAMPLE PREPARATION	10
3.2	7.1 Test method and description	10
3.2	.2 Cell cycling curves	11
3.3	DETERMINATION OF CELL THERMAL RUNAWAY METHODOLOGY	
3.3	7.1 Test method and description	14
3.3		
3.3	2.3 Temperature/voltage vs time curve	16
3.4		
3.4		
3.4		
	DETERMINATION OF CELL VENT GAS COMPOSITION	
3.5		
B 3.5		
3.6	FLAMMABILITY CHARACTER PARAMETERS OF THE CELL VENT GAS	
3.6		
3.6		
3.7	PHOTOS	23
4 LIS	ST OF TEST AND MEASUREMENT INSTRUMENTS	29
	NDIX A: CELL VENT GAS LOWER FLAMMABILITY LIMIT (LFL) TEST	
APPEN	NDIX B: CELL VENT GAS BURNING VELOCITY (SU) TEST	PT35
APPEN	NDIX C: CELL VENT GAS MAXIMUM PRESSURE (PMAX) TEST	37

Prüfbericht - Nr.: CN24NHLM 001

Test Report No.: Seite 4 von 39

Page 4 of 39

1 General information

1.1 Test specification

Standard: ANSI/CAN/UL 9540A:2019 (Fourth Edition)

Test Method for Evaluating Thermal Runaway Fire Propagation in Battery Energy Storage Systems

This report presents the result of cell level tests of UL 9540A: 2019.

All tests were conducted at TUV Rheinland (Shanghai) Co., Ltd. and TUV Rheinland's partner labs that were under supervision of TÜV Rheinland's engineer.

Testing period: 2023.12.15 ~ 2024.01.30

REPT # in the state of the stat

Refer to Clause 4 for test and measurement instruments.

Prüfbericht - Nr.: CN24NHLM 001 Seite 5 von 39
Test Report No.: Page 5 of 39

1.2 General remarks

This report is descriptive and provide the test data only.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the testing laboratory.

Throughout this report a \square comma / \boxtimes point is used as the decimal separator.

1.3 List of attachments

The following attachments resulting from the tests, provided with separate page number, are included in this report.

Appendix A: Cell vent gas lower flammability limit (LFL) test

Appendix B: Cell vent gas burning velocity (Su) test

Appendix C: Cell vent gas maximum pressure (Pmax) test

1.4 Revision information

New report, not applicable.

TTERO

Prüfbericht - Nr.: CN24NHLM 001 Seite 6 von 39
Test Report No.: Page 6 of 39

1.5 Definitions

CELL – The basic functional electrochemical unit containing an assembly of electrodes, electrolyte, separators, container, and terminals. It is a source of electrical energy by direct conversion of chemical energy.

MODULE – A subassembly that is a component of a BESS that consists of a group of cells or electrochemical capacitors connected together either in a series and/or parallel configuration (sometimes referred to as a block) with or without protective devices and monitoring circuitry.

UNIT – A frame, rack or enclosure that consists of a functional BESS which includes components and subassemblies such a cells, modules, battery management systems, ventilation devices and other ancillary equipment.

BATTERY SYSTEM (BS) – Is a component of a BESS and consists of one or more modules typically in a rack configuration, controls such as the BMS and components that make up the system such as cooling systems, disconnects and protection devices.

BATTERY ENERGY STORAGE SYSTEM (BESS) – Stationary equipment that receives electrical energy and then utilizes batteries to store that energy to supply electrical energy at some future time. The BESS, at a minimum consists of one or more modules, a power conditioning system (PCS), battery management system (BMS) and balance of plant components.

- a) INITIATING BATTERY ENERGY STORAGE SYSTEM UNIT (INITIATING BESS) A BESS unit which has been equipped with resistance heaters in order to create the internal fire condition necessary for the installation level test (Section 9).
- b) TARGET BATTERY ENERGY STORAGE SYSTEM UNIT (TARGET BESS) The enclosure and/or rack hardware that physically supports and/or contains the components that comprise a BESS. The target BESS unit does not contain energy storage components, but serves to enable instrumentation to measure the thermal exposure from the initiating BESS.

Note: Depending upon the configuration and design of the BESS (e.g. the BESS is composed of multiple separate parts within separate enclosures), the unit level test can be done at battery system level. In such case, the BESS is be read as BS throughout this report.

NON-RESIDENTIAL USE – Intended for use in commercial, industrial or utility owned locations.

RESIDENTIAL USE – In accordance with this standard, intended for use in one or two family homes and town homes and individual dwelling units of multi-family dwellings.

THERMAL RUNAWAY- The incident when an electrochemical cell increases its temperature through self-heating in an uncontrollable fashion. The thermal runaway progresses when the cell's generation of heat is at a higher rate than the heat it can dissipate. This may lead to fire, explosion and gas evolution.

STATE OF CHARGE (SOC) – The available capacity in a BESS, pack, module or cell expressed as a percentage of rated capacity.

Prüfbericht - Nr.:	CN24NHLM 001	Seite 7 von 39
Test Report No.:		Page 7 of 39

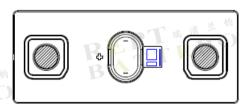
2 General Product Information

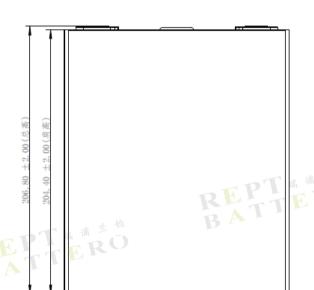
2.1 Product information and parameters

The product information and parameters are provided by the client as below.

Manufacturer:	REPT BATTERO Energy Co., Ltd.			
Model number:	CB84			
Chemistry:	☐ LiFePO₄ ☐ NMC ☐ NCA ☐ LTO			
	Other:			
Physical configuration::	□ Prismatic □ Cylindrical □ Pouch			
	Weight(kg): 5.94±0.3			
Electrical rating:	Rated capacity (Ah): 345			
	Nominal voltage (V): 3.2			
Standard charge method:	Charge current(A): 172.5			
BAT BAT	End of charge 3.65 voltage(V):			
Standard discharge method::	Discharge current(A): 172.5			
*	End of discharge voltage(V):			
Compliance with UL 1973:	⊠ Yes			
	Certificate No.: CU 72403934 0001			
	Report No.: CN24KPK3 001			
Dimension(L*W*H)	174.0mm * 71.7mm * 206.8mm			

T_{瑪淵兰} TERO



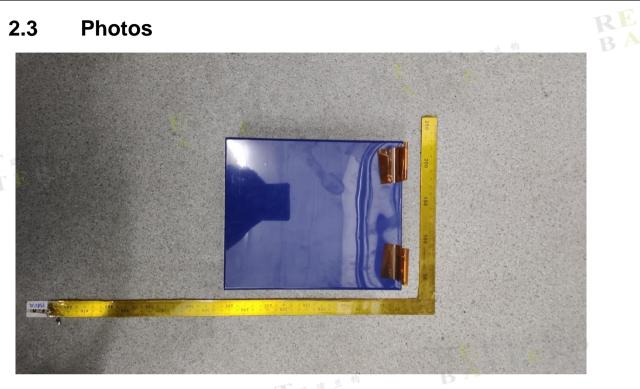

CN24NHLM 001 Prüfbericht - Nr.:

Test Report No.:

Seite 8 von 39 Page 8 of 39

Diagram with overall dimension 2.2

174.00 ±2.00(总宽)



CN24NHLM 001 Prüfbericht - Nr.:

Seite 9 von 39 Page 9 of 39

Test Report No.:

2.3 **Photos**

Prüfbericht - Nr.: CN24NHLM 001

Test Report No.: Seite 10 von 39

Page 10 of 39

3 Cell level test (section 7 of UL 9540A)

3.1 General

This testing is conducted on individual cells and uses various stress conditions such as external heating to force the cells into thermal runaway.

Once the stress mechanism is induced, the test measures the temperature at which the cell vents and then the temperature at which thermal runaway occurs.

The test also measures the volume and pressure of the vent gases that are released from the cells, and the composition of the vent gases.

Cell vent gas with flammable components in its composition should have the following parameters characterized in order to enable deflagration venting design:

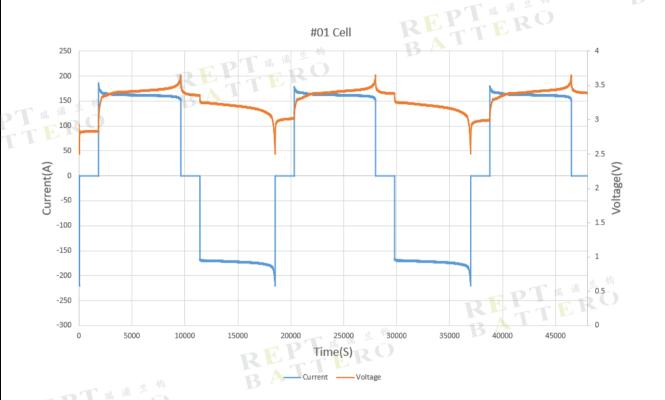
- a) Measurement of fundamental burning velocity by the vertical tube method described in the Method of Test for Burning Velocity Measurement of Flammable Gases Annex in ISO 817; and
- b) Maximum pressure developed in a contained deflagration of an optimum mixture per EN 15967.

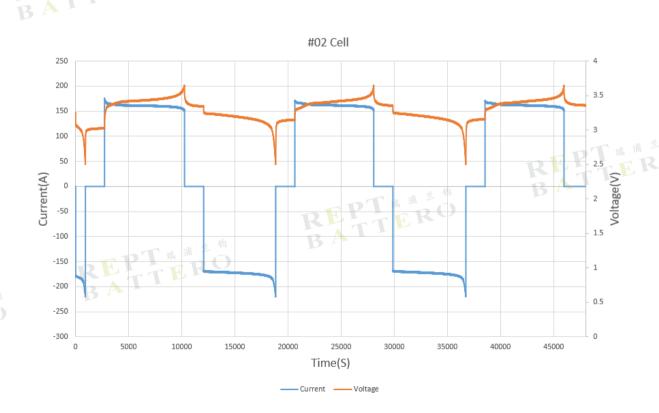
Cell level testing performed on the cells used within a BESS module establishes a base line fire test performance that can be evaluated against the fire performance of other battery cells the BESS manufacturer may choose to use within the unit's modules.

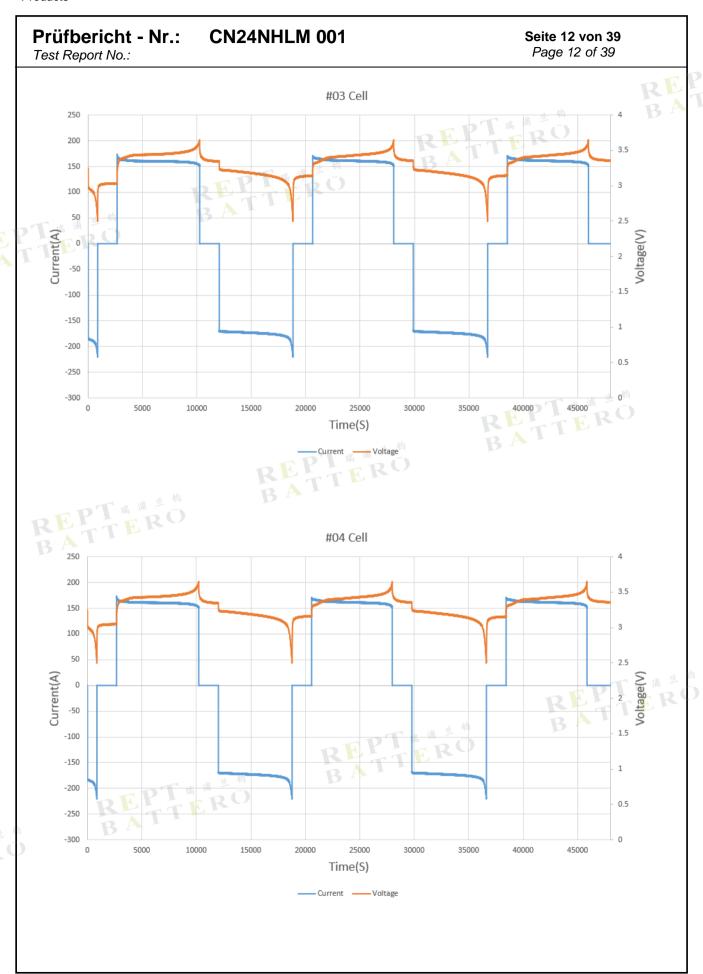
If none of the cell samples can be forced into thermal runaway and none of the cell samples vent flammable gases as determined by the ASTM E918 test, during any of the cell level tests, it is not necessary to conduct additional module or unit level testing on BESS that utilize these cells.

3.2 Sample preparation

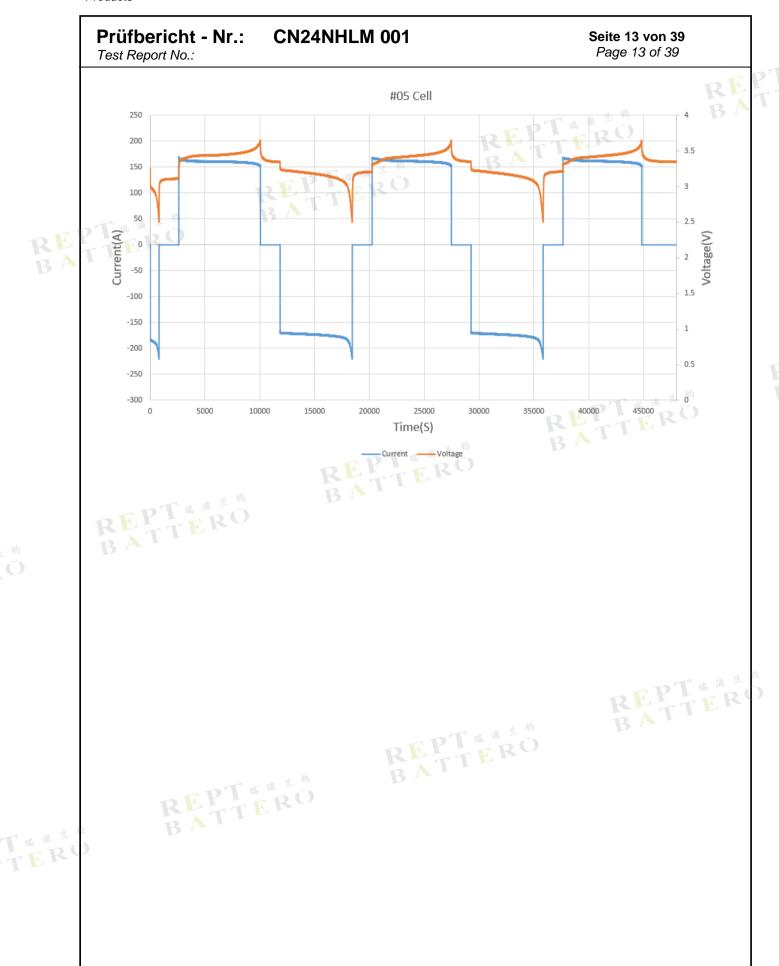
3.2.1 Test method and description


The cells were conditioned, prior to testing, through charge and discharge cycles for 3 cycles using a manufacturer specified methodology (refer to 2.1.1).


During the cycling, ambient condition is maintained within 25°C±2°C and R.H. 50±5 %.


Prüfbericht - Nr.: CN24NHLM 001 Seite 11 von 39
Test Report No.: Page 11 of 39

3.2.2 Cell cycling curves



Prüfbericht - Nr.: CN24NHLM 001

Test Report No.: Seite 14 von 39

Page 14 of 39

3.3 Determination of cell thermal runaway methodology

3.3.1 Test method and description

The cells to be tested were charged to 100% SOC and allowed to stabilize for a minimum of 1 h and a maximum of 8 h before the start of the test.

Two external film heaters rated 220VAC/900 W (size 190mm*170mm) were added on the two wide surfaces of cell to induce the cell thermal runaway.

The cell sample and heater were clamped by two steel plate (size 235*210*2 mm) together using four blots during test to simulate the constraint in the BESS module to prevent excessive swelling during the test. Two layers insulation sheet were placed below the heater and two layers on the top of the cell to limit the heat transmit during test.

Thermocouple (type K, 24AWG), Two were located below the heater, at the center of the cell surface. One used for heater controller temperature feedback, the other used to record cell temperature. One thermocouple was located on the bottom side of the cell at the center of the cell surface. The temperature of vent, positive electrode, narrow surface center of cell also record by thermocouple.

A PID controller was used to control the voltage supply to the heater and maintain a 4°C/min to 7°C/min heating rate. Once thermal runaway was observed, the heaters were immediately de-energized.

One thermocouple was located below the heater at the center of the cell surface to feedback the temperature to the controller.

The cell exhibits thermal runaway after reestablish the heating rate. 3 additional samples were repeated to demonstrate repeatability.

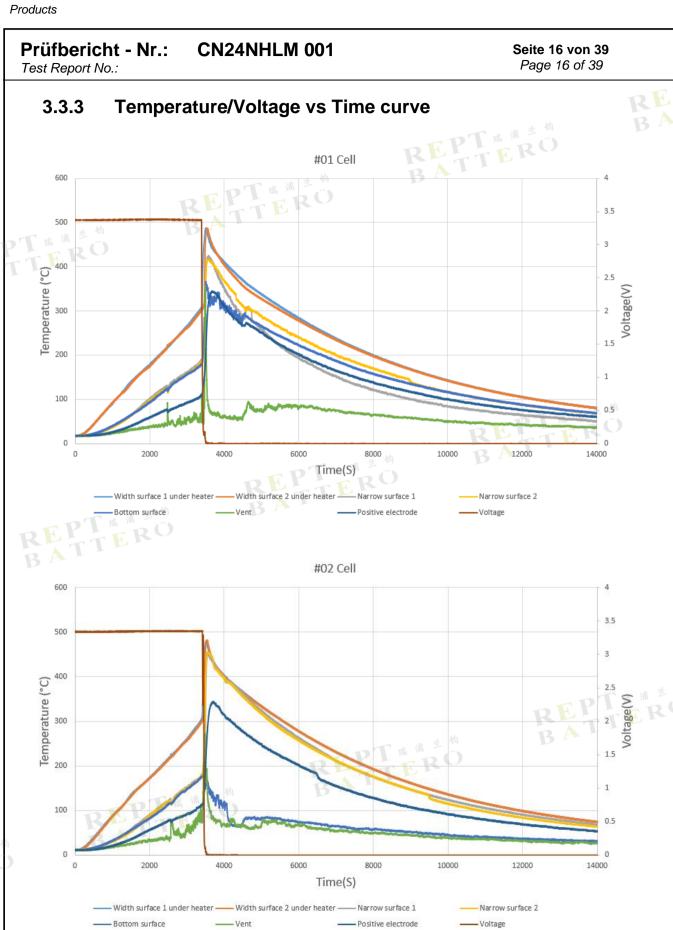
The vent temperature and thermal runaway onset temperatures were averaged over the tested samples.

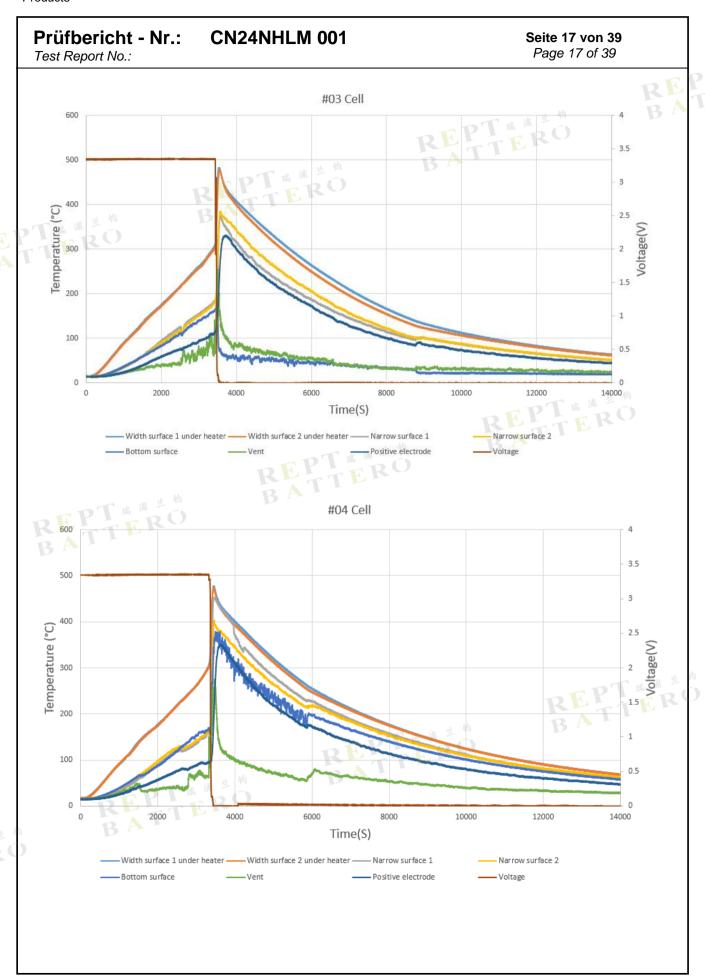
Prüfbericht - Nr.: CN24NHLM 001 Seite 15 von 39
Test Report No.: Page 15 of 39

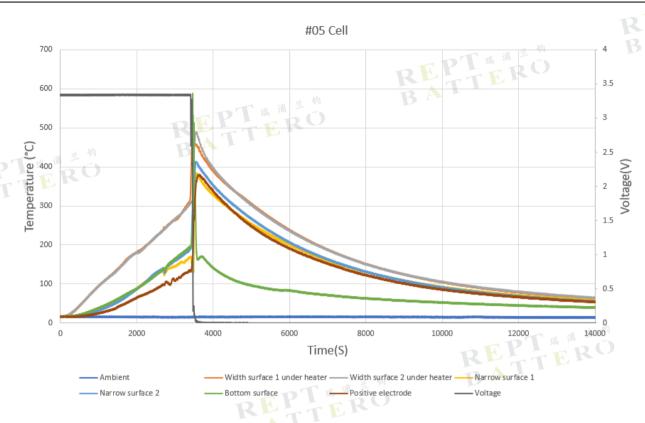
3.3.2 Test result

			CPT端		
Ambient conditions at the initiation of	23.5°C	22.8°C	23.2°C	23.6°C	22.6°C
the test	51% R.H.	55% R.H.	51% R.H.	53% R.H.	52% R.H.
Sample number	#01	#02	#03	#04	#05 ¹⁾
Open circuit voltage before test (V)	3.38	3.34	3.36	3.35	3.34
Cell vent temperature (°C)	128.8	124.5	122.0	126.9	127.1
Cell vent time (min)	41.0	43.0	42.0	42.0	43.0
Thermal runaway onset temperature (°C)	187.7	180.3	182.8	158.9	179.8
Thermal runaway onset time(min)	57.0	57.0	57.0	56.0	57.0
Maximum temperature (°C)	486.8	482.1	481.9	477.2	587.1
Average cell vent temperature (°C) ²⁾	125.5			PT编	兰伯
Average thermal runaway onset temperature (°C) 2)	177.4	兰钩	REBA	TTE	RO

Note:


- 1) The sample is for gas vent capture.
- 2) The temperatures were averaged over the tested samples (#01, #02, #03, #04) excluding the gas vent capture sample (#05).





The temperature of vent was damaged during the test.

REPT****

REPTAR

Prüfbericht - Nr.: CN24NHLM 001 Seite 19 von 39
Test Report No.: Page 19 of 39

3.4 Cell vent gas generation and capturing

3.4.1 Test method and description

The cells to be tested were charged to 100% SOC and allowed to stabilize for a minimum of 1 h and a maximum of 8 h before the start of the test.

A cell was forced into thermal runaway by the external heating as determined in cell thermal runaway methodology test inside an 140L pressure vessel.

Before testing, the vessel was purged with N₂ to reduce the oxygen content below 1% by volume.

Gas mixtures were collected before and after thermal runaway testing. 0.3L gas collection bag with two valve were used for the gas collection.

1 bag before thermal runaway was used to determine the initial atmospheric inside the vessel. 2 bags after thermal runaway was used to determine the vent gas composition.

Cell weight was measured before and after test for reference.

Pressure was measured before and after thermal runaway to calculate the total gas produced for reference.

3.4.2 Test result

Ambient conditions:	22.6°C, 52% R.H.
Sample number:	#05
Open circuit voltage before test (V):	3.36
Pressure vessel size:	140L
Initial oxygen content by volume (%):	< 0.1 %
Cell weight before test (g):	5890
Cell weight after test (g):	4750 E
Total vent gas produced (L):	165.3 B A
R B	165.3 EPTERO

Prüfbericht - Nr.: CN24NHLM 001 Seite 20 von 39
Test Report No.: Page 20 of 39

3.5 Determination of cell vent gas composition

3.5.1 Test method

Cell vent gas composition was determined using Gas Chromatography (GC) with detection techniques for quantifying component gases.

Gas analysis was determined in accordance with ISO 6143: 2001 Gas analysis — Comparison methods for determining and checking the composition of calibration gas mixtures)

The gases make up in table 1 approximately 70% of the total volume with the balance of approximately 30% of N_2 . HF was measured less than 0.1% in concentration, which was omitted in the table.

Table 2 contains normalized volumetric gas compositions by removing the N_2 contributions. This information was used to synthetically replicated gas mixture for further flammability character parameter tests.

3.5.2 Test result

Table 1: Vent gas components PT

Gas component	Concentration % (v/v)
CH ₄	3.002
C ₂ H ₂	0.090
C ₂ H ₄	1.562
C ₂ H ₆	0.419
C ₃ H ₄	0.006
C ₃ H ₆	0.199
C ₃ H ₈	0.165
C ₄ H ₆	0.147
i-C ₄ H ₈	0.078
i-C ₄ H ₁₀	0.134
H ₂	31.779
城浦兰 CO	5.473
CO ₂	8.408
N ₂	48.538
Total	100

Test Report No.:

Seite 21 von 39 Page 21 of 39

Table 2: Vent gas components (normalized)

The gas components N2 was removed.

REPT H H H H
Concentration % (v/v)
5.934
0.178
3.087
0.828
0.012
0.393
0.326
0.290
0.154
0.265
62.813
9.101
16.619
100

Prüfbericht - Nr.: CN24NHLM 001 Seite 22 von 39
Test Report No.: Page 22 of 39

3.6 Flammability character parameters of the cell vent gas

3.6.1 Test method

Upon determination of the cell vent gas composition, the flammability character parameters were determined on sample of the synthetically replicated gas mixture with maximum uncertainty 2%.

Lower flammability limit (LFL) of the cell vent gas was determined in accordance with ASTM E918, testing at both ambient and cell vent temperatures.

The gas burning velocity was determined in accordance with the Method of Test for Burning Velocity Measurement of Flammable Gases Annex in ISO 817.

The maximum explosion pressure P_{max} was determined on samples of the synthetically replicated gas mixture in accordance with EN 15967.

Below table show the test result only. Detailed test report refer to Appendix A, Appendix B and Appendix C.

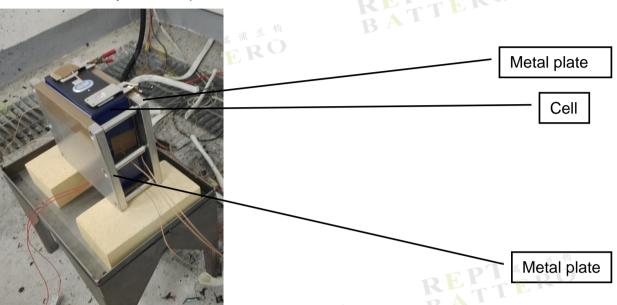
References:

ASTM E 918-19 – Standard Practice for Determining Limits of Flammability of Chemicals at Elevated Temperature and Pressure

ISO 817: 2014/Amd 1: 2017 - Refrigerants - Designation and safety classification

EN 15967: 2011 – Determination of maximum explosion pressure and the maximum rate of pressure rise of gases and vapours

3.6.2 Test result


LFL at 26°C±2°C and 101±3kPa:	6.9%	(see Appendix A for details)
LFL at 125°C±2°C and 101±3kPa:	6.1%	(see Appendix A for details)
Burning Velocity S _u (m/s) at room temperature:	0.949	(see Appendix B for details)
P _{max} (MPa) at room temperature:	0.778	(see Appendix C for details)
BAI		

CN24NHLM 001 Prüfbericht - Nr.: Seite 23 von 39 Page 23 of 39 Test Report No.:

3.7 **Photos**

Thermal runaway test setup

Test Report No.:

Seite 24 von 39 *Page 24 of 39*

Test sample #01 at ambient condition

Venting

Thermal runaway

Test sample #02 at ambient condition

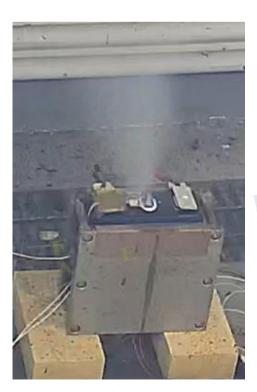
Venting

Thermal runaway

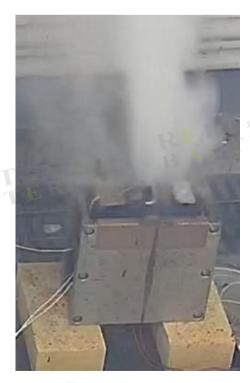
Test Report No.:

Seite 25 von 39 *Page 25 of 39*

Test sample #03 at ambient condition



Venting



Thermal runaway

Test sample #04 at ambient condition

Venting

Thermal runaway

Test Report No.:

Seite 26 von 39 *Page 26 of 39*

Cell sample after test #01 cell

Test Report No.:

Seite 27 von 39 *Page 27 of 39*

#03 cell

REPT** # 兰·特 BATTERO

#04 cell

Test Report No.:

Seite 28 von 39 *Page 28 of 39*

#05 cell

REPT x 浦兰的 BATTERO

Test Report No.:

Seite 29 von 39 *Page 29 of 39*

4 List of Test and Measurement Instruments

	No.	Equip	ment	Model	Rating	Inventory no.	Cal. expire date
	1.	Ambien	t monitor	WSB-2-H1	0-40°C,10- 90%RH	S-055	2024.07.11
	2	Ambien	t monitor	WSB-2-H1	0-40°C,10- 90%RH	S-050	2025.01.03
Γ	3	Ambien	t monitor	WSB-2-H1	0-40°C,10- 90%RH	S-044	2025.01.03
	4	Ambien	t monitor	WSB-2-H1	0-40°C,10- 90%RH	S-056	2024.07.11
	5	Ambien	t monitor	WSB-2-H1	0-40°C,10- 90%RH	S-006	2024.12.19
	6		discharge oment	HRCDS-5V300A	5V/300A	S-057	2024.07.11
	7	Ru	uler	300mm	300mm	S-051	2025.01.03
	8	Electron	nic scale	HC311	0-6000g	S-047	2024.02.12
	9	Digital m	ulti-meter	FLUKE101	0-600V	S-038	2024.02.08
	10	Heating cont	rol equipment	→ DTB4824	0-1000°C	S-060-3	2024.07.11
1	11	Data acquisit	ion equipment	ADAM-4117 ADAM-4118	0-10V 0-1000°C	S-060-1 S-060-2	2024.07.11 2024.07.11
	12	Heating control equipment Data acquisition equipment		DTB4824	0-1000°C	S-028-3	2024.02.08
	13			ADAM-4117 ADAM-4118	0-10V 0-1000°C	S-028-1 S-028-2	2024.02.08 2025.01.03
	14	Heating cont	rol equipment	DTB4824	0-1000°C	S-030-3	2024.02.08
	15	Data acquisit	ion equipment	ADAM-4117 ADAM-4118	0-10V 0-1000°C	S-030-1 S-030-2	2024.02.08 2024.02.08
	16	Heating cont	rol equipment	DTB4824	0-800°C	S-058-3	2024.07.11
	17	Data acquisit	ion equipment	ADAM-4117 ADAM-4118	0-10V 0-1000°C	S-058-1 S-058-2	2024.07.11 2024.07.11
	18	Gas Chror	matography	PE Clarus680	E K	T-177	2024.11.16
	19		matography	GC-2014C		T-251	2025.01.10
		0	Thermopile	WRNK-191 K	0-1000°C	S-020- 1~10	2025.01.03
	20	Gas acquisition system	Pressure sensor	BD-801KZ	0~90kPa	S-020-11	2024.02.08
		82L	Data acquisition equipment	DTM DTB4824 DTM	0-1000°C 0-1000°C 0-10V	S-020-12 S-020-13 S-020-14	2025.01.03

0

Prüfbericht - Nr.: CN24NHLM 001

Test Report No.:

Seite 30 von 39 *Page 30 of 39*

_							
			Thermopile	GG-K-30-1000	0-800°C	S-046- 1~10	2024.06.15
	21	Gas acquisition system	Pressure sensor	BD-801KZ	0~90kPa	S-020-11	2024.02.08
		10L 潇 芝 樹	Data acquisition equipment	DTM DTB4824 DTM	0-1000°C 0-1000°C 0-10V	S-020-12 S-020-13 S-020-14	2025.01.03
T	TE	RO	Thermopile	GG-K-30-1000	0-800°C	S-052- 2~11	2024.06.08
	22	Gas acquisition system	Pressure sensor	BD-801KZ	0~0.5MPa	S-052-1	2024.06.08
		86L	Data acquisition equipment	ADAM-4117 ADAM-4118 DTB4824	0-10V 0-1000°C 0-1000°C	S-071-1 S-071-2 S-071-3	2024.06.08
			Thermopile	GG-K-30-1000	0-800°C	S-071- 6~15	2024.06.08
	23	Gas acquisition system 340L	Pressure sensor	PTX-50G2-TC-A3-CA- HO-PB PTX-50G2-TC-A3-CA- HO-PB	0~2MPa -0.1~1MPa	S-071-4 S-071-5	2024.06.08
1	RE	PT A A TER	Data acquisition equipment	DTM DTB4824 DTM	0-1000°C 0-1000°C 0-10V	S-020-12 S-020-13 S-020-14	2025.01.03
	24	Oxygen	analyzer	HM-BX-02	0-20.9%	S-014	2024.12.20
			Temperature measurement	TJ120-CAXL-116U-10- SMPW-M	0-200°C	S-021-1	2024.02.08
		Gas	High frequency dynamic pressure sensor	Kistler 603CAA	0~100MPa	S-021-2	2024.05.26
2	25	explosion test system (5L)	Pressure gauge	PTX 50G2-TC-A3-CA- H0-PB	-0.1~+0.5MPa	S-021-3	2024.05.26
		REP	Pressure gauge	PTX 50G2-TC-A3-CA- H0-PB	-0.1~+0.3MPa	S-021-4	2024.05.26
	26	Gas flammability testing	Pressure gauge	PTX 50G2-TC-A3-CA- H0-PB	- 0.1~+0.15MPa	S-053-1	2024.03.24

Prüfbericht - Nr.: CN24NHLM 001 Seite 31 von 39
Test Report No.: Page 31 of 39

		equipment (5L)	Temperature measurement	TJ120-CAXL-116U-10- SMPW-M	0-300°C **	S-053-2	2024.03.24
		- 土 約	Temperature measurement	TJ120-CAXL-116U-10- SMPW-M	0~200°C	S-022-1	2024.02.08
	T T E	Combustible gas combustion rate device	Temperature measurement	TJ120-CAXL-116U-10- SMPW-M	0~200°C	S-022-2	2024.02.08
	27		Pressure gauge	PTX 50G2-TC-A3-CA- H0-PB	-0.1~+0.5MPa	S-022-4	2024.03.24
			straight steel ruler	Shuguang 1m	1000mm	S-040	2024.12.19
			High speed camera	Photron fastcam miniAX50	216000fps	S-022-3	RO
•	REPT ERO BATTERO						

REPT H H E H

REPTERO

REPT # 清 兰 构 BATTERO

T_{瑪淵兰} TERO

Prüfbericht - Nr.: CN24NHLM 001 Seite 32 von 39
Test Report No.: Page 32 of 39

Appendix A: Cell vent gas lower flammability limit (LFL) test

	Sample information					
	Name of Sample	nixture				
	Cylinder volume	40L	Filling pressure	70bar		
	Certification number	G1746397	Calibration Uncertainty	2%		
	Calibration date	2023/12/17	Effective date	2024/12/16		
		Calibrated sample	e composition			
	Gas component Concentration % (v/v)		Gas component	Concentration % (v/v)		
	CH ₄	5.92	C ₄ H ₆	B A T 0.29		
	C ₂ H ₂	0.15	i-C ₄ H ₈	0.15		
	C ₂ H ₄ , , ,	3.07	i-C ₄ H ₁₀	0.25		
RE	C ₂ H ₆	0.80	СО	8.96		
	C ₃ H ₄	0.01	CO ₂	15.84		
	C ₃ H ₆	0.39	H ₂	Balance		
	C ₃ H ₈	0.31				

0

T_{瑞浦兰}梅 TERO

REPT Hill HER

Prüfbericht - Nr.:	CN24NHLM 001	Seite 33 von 39
Test Report No.:		Page 33 of 39

	Test Method	ASTM E918-19 Standard Practice for Determining Limits of Flammability of Chemicals at Elevated Temperature and Pressure
	Test Item	The lower flammability of gas mixture
	Test Apparatus	Test Vessel: 5L closed sphere Ignition system: Fusing Wire
	Preparation of Test Mixture	Partial pressure method used inside the vessel; Accuracy: within 0.2% absolute
		The symbols used in this report are defined as below except otherwise defined:
		cs — Concentration of sample;
		T _i —— Initial temperature in each trial;
		p _i —— Initial pressure in each trial;
	Symbol and	p _{ex} — Overpressure in each trial; It is considered flame occurred, if pex / pi ≥ 1.07.
	definition	L ₁ —— The minimum sample concentration that gives flame propagation;
	EPT ^{海流兰物} ATTERC	
2	ETTER	LFL —— Lower flammable limit;
B	A	LFL is expressed as: LFL = (L1+ L2)/2
		Concentration defined in this report means volume percentage.
	Remark	This report is effective under the specific condition; please seek for the advice of expert for risk assessment in producing, processing, transportation and storage.

Prüfbericht - Nr.: CN24NHLM 001 Seite 34 von 39
Test Report No.: Page 34 of 39

LFL test data at room temperature (part)								
Test Condi	tion		I Temperatu I Pressure:	re: 26(±2)°C 101(±3)kPa	REP	TERC	-	
No.	cs [%		Ti [°C]	p _i [kPa]	p _{ex} [kPa]	p _{ex} / p _i	Ignition	
1	6.8	3	26.0	100.66	103.33	1.027	N	
2	6.8	3	24.6	100.88	106.90	1.060	N	
3	7.0)	27.1	101.11	109.79	1.086	Υ	
4	7.0)	26.2	100.88	108.23	1.073	Y	
Test result L1=6.8%, L2=7.0%, LFL=6.9%					TRU			
BATT								

LFL test data at cell vent temperature (part)									
RE	Test Condition Initial Temperature: 125 (±2)°C Initial Pressure: 101(±3)kPa								
	No.	cs [%]	Ti [°C]	p _i [kPa]	p _{ex} [kPa]	p _{ex} / p _i	Ignition		
	1	6.0	124.4	101.80	107.59	1.057	N		
	2	6.0	124.8	102.24	108.48	1.061	N		
	3	6.2	124.8	100.01	107.60	1.076	TYT %		
	4	6.2	125.6	102.29	109.65	1.072	AYTE		
Test result L1=6.0%, L2=6.2%, LFL=6.1%									
	REPT # # BATTERO								

Prüfbericht - Nr.: CN24NHLM 001 Seite 35 von 39
Test Report No.: Page 35 of 39

Appendix B: Cell vent gas burning velocity (Su) test

Same synthetically replicated gas mixture as LFL test was used for the test. See appendix A for detailed sample information.

Test Method	ISO 817: 2014 / Amd 1: 2017 Refrigerants - Designation and safety classification
Test Item	Burning velocity of flammable gases
Test Apparatus	Test vessel: Glass tube; length 1500 mm; inner diameter 40 mm Ignition system: Electric spark Recorder: High speed camera
Preparation of Test Mixture	Partial pressure method used inside the vessel; Accuracy: within 0.2% absolute
Symbol and definition	The symbols used in this report are defined as below except otherwise defined: c_s — Concentration of sample; S_s — Flame propagation speed; a_f — Cross-sectional area of flame bottom; A_f — Flame surface area; S_u is calculated as: $S_u = S_S \times \frac{a_f}{A_f}$
Remark	This report is effective under the specific condition; please seek for the advice of expert for risk assessment in producing, processing, transportation and storage.

Prüfbericht - Nr.: CN24NHLM 001 Seite 36 von 39
Test Report No.: Page 36 of 39

Burning velocity test data (part)								
Test Condition	Initial pressure: The oxidant use	re: room tempera atmospheric press d: synthetic air able substance co	sure					
No	Cs [%]	S _S [m/s]	af / Af	S _u [m/s]				
1	31	1.781	0.268	0.477				
2	32	1.781	0.347	0.618				
3	33	1.779	0.533	0.949				
4	34	0.891	0.967	0.861				
Test result S _u = 0.949 m/s at room temperature and atmosphere pressure.								
REPT RO BATTERO								

TERO

REPT^{場浦兰} BATTERO

T_{滿滿}生作 TERC REPT # # # # # O

Prüfbericht - Nr.: CN24NHLM 001 Seite 37 von 39
Test Report No.: Page 37 of 39

Appendix C: Cell vent gas maximum pressure (Pmax) test

Same synthetically replicated gas mixture as LFL test was used for the test. See appendix A for detailed sample information.

Test Method	EN 15967: 2011 Determination of maximum explosion pressure and the maximum rate of pressure rise of gases and vapours			
Test Item	Maximum explosion pressure of the gas mixture			
Test	Test Vessel: 20L closed sphere			
Apparatus	Ignition system: Fusing Wire			
Preparation of	Partial pressure method used inside the vessel;			
Test Mixture	Accuracy: within 0.2% absolute			
	The symbols used in this report are defined as below except otherwise defined:			
山海兰物	c _s — Content of flammable substance by volume;			
EPI	p _{exn} —— Explosive overpressure in the n th ignition test at a certain concentration;			
Symbol and	p _{ex} — The average value of the explosion overpressure at a certain concentration;			
definition	P _{Mean} ——The average value of the explosion overpressure at a certain concentration;			
	P _{Lowest} —— Lowest explosion pressure in 5 (resp. 3) tests;			
	P _{Highest} —— Highest explosion pressure in 5 (resp. 3) tests;			
	P _{max} — Maximum explosion pressure;			
	p _{max} is expressed as the maximum value of p _{ex} .			
Remark	This report is effective under the specific condition; please seek for the advice of expert for risk assessment in producing, processing, transportation and storage.			

Prüfbericht - Nr.: CN24NHLM 001 Seite 38 von 39
Test Report No.: Page 38 of 39

P _{max} test data (part)								
Test Condition Initial Temperature: 24(±2)°C Initial Pressure: 101(±5)kPa								
		REP	Part of					
). R	Cs [%]	p _{ex1} [MPa]	p _{ex2} [MPa]	р _{ех3} [MPa]	p _{ex4} [MPa]	p _{ex5} [MPa]	p _{ex} [MPa]	
	22.0	0.728	0.728	0.725	/	/	0.727	
	23.0	0.738	0.737	0.733	/	/	0.736	
	24.0	0.743	0.747	0.743	/	/	0.744	
	24.2	0.747	0.750	0.747	/	/	0.748	
	24.4	0.752	0.754	0.749	/	/	0.752	
	24.6	0.778	0.766	0.767	/	1	0.770	
	24.8	0.758	0.757	0.762	/ R	ELT	0.759	
	25.0	0.759	0.757	0.757	/	1	0.758	
	26.0	0.753	0.752	0.754	/	/	0.753	
)	27.0	0.747	0.747	0.745	1	/	0.746	
)	R	Cs [%] 22.0 23.0 24.0 24.2 24.4 24.6 24.8 25.0 26.0	Cs [%] [MPa] 22.0 0.728 23.0 0.738 24.0 0.743 24.2 0.747 24.4 0.752 24.6 0.778 24.8 0.758 25.0 0.759 26.0 0.753	Initial Temperature: 2 Initial Pressure: 101(s) Part of D. Cs	Initial Temperature: 24(±2)°C Initial Pressure: 101(±5)kPa Part of Test Data Cs	Initial Temperature: 24(±2)°C Initial Pressure: 101(±5)kPa Part of Test Data Pex1	Initial Temperature: 24(±2)°C Initial Pressure: 101(±5)kPa Part of Test Data Cs	

REPT # # 5 to

Prüfbericht - Nr.: CN24NHLM 001 Seite 39 von 39
Test Report No.: Page 39 of 39

					tola .				
Determination of the explosion pressure									
No.	Cs	P _{Lowest}	PHighest	P _{Mean}	P _{ex}				
140.	[%]	[MPa]	() [MPa]	[MPa]	[MPa]				
1	22.0	A 0.725	0.728	0.727	0.728				
2 R	23.0	0.733	0.738	0.736	0.738				
3	24.0	0.743	0.747	0.744	0.747				
4	24.2	0.747	0.750	0.748	0.750				
5	24.4	0.749	0.754	0.752	0.754				
6	24.6	0.766	0.778	0.770	0.778				
7	24.8	0.757	0.762	0.759	0.762				
8	25.0	0.757	0.759	0.758	0.759				
9	26.0	0.752	0.754	0.753	0.754				
10	27.0	0.745	0.747	0.746	0.747				
Test result									
Conte	ent of flammable	substance	24.6% volume						
Accur	acy R		0.2% absolute						
Maxin	num explosion p	oressure		0.778 MPa					

End of Test Report

